2.Structure and Properties of Matter

2.Structure and Properties of Matter

Students who demonstrate understanding can:

- 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
- 2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment of quantitative measurements is limited to length.]
- 2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]
- 2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

 Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

Analyzing and Interpreting Data

Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

 Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

 Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (2-PS1-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).

 Construct an argument with evidence to support a claim. (2-PS1-4)

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

 Scientists search for cause and effect relationships to explain natural events. (2-PS1-4)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

- Different properties are suited to different purposes. (2-PS1-2),(2-PS1-3)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1.B: Chemical Reactions

 Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Crosscutting Concepts

Patterns

Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect

- Events have causes that generate observable patterns. (2-PS1-4)
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter

 Objects may break into smaller pieces and be put together into larger pieces, or change shapes. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

 Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels: 4.ESS2.A (2-PS1-3); 5.PS1.A (2-PS1-1),(2-PS1-2),(2-PS1-3); 5.PS1.B (2-PS1-4); 5.LS2.A (2-PS1-3)

Common Core State Standards Connections:

ELA/Literacy -

RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)

RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)

RI.2.8 Describe how reasons support specific points the author makes in a text. (2-PS1-2),(2-PS1-4)

W.2.1 Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)

W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1),(2-PS1-2),(2-PS1-3)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1),(2-PS1-2),(2-PS1-3)

Mathematics -

MP.2 Reason abstractly and quantitatively. (2-PS1-2)

MP.4 Model with mathematics. (2-PS1-1),(2-PS1-2)

MP.5 Use appropriate tools strategically. (2-PS1-2)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1),(2-PS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 ©2013 Achieve, Inc. All rights reserved. 1 of 1

5.Structure and Properties of Matter

5.Structure and Properties of Matter

Students who demonstrate understanding can:

- 5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of vidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
- 5-PS1-2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing
- 5-PS1-3. Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]
- 5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 3-5 builds on K-2 experiences and progresses to building and revising simple models and using models to represent events and design solutions

 Develop a model to describe phenomena. (5-PS1-1) **Planning and Carrying Out Investigations** Planning and carrying out investigations to answer questions or test solutions to problems in 3-5 builds on

K-2 experiences and progresses to include investigations that control variables and provide evidence to support

- conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (5-PS1-4)
- Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (5-PS1-3)

Using Mathematics and Computational Thinking
Mathematical and computational thinking in 3–5 builds on K-2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

Measure and graph quantities such as weight to address scientific and engineering questions and problems. (5-PS1-2)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1)
- The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

PS1.B: Chemical Reactions

- When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
- No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

Crosscutting Concepts

Cause and Effect

Cause and effect relationships are routinely identified, tested, and used to explain change. (5-PS1-4)

Scale, Proportion, and Quantity

- Natural objects exist from the very small to the immensely large. (5-PS1-1)
- Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-2),(5-PS1-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

Science assumes consistent patterns in natural systems. (5-PS1-2)

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.PS1.A (5-PS1-1),(5-PS1-2),(5-PS1-3); 2.PS1.B (5-PS1-2),(5-PS1-4); MS.PS1.A (5-PS1-1),(5-PS1-2),(5-PS1-4); MS.PS1.B (5-PS1-1),(5-PS1-2),(5-PS1-3),(5-PS1-4); MS.PS1.B (5-PS1-4); MS.PS1 PS1-2),(5-PS1-4)

Common Core State Standards Connections:

ELA/Literacy

- RT.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS1-
- W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-2),(5-PS1-3),(5-PS1-4)
- W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-2),(5-PS1-3),(5-PS1-4)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-2).(5-PS1-3).(5-PS1-4)

Mathematics

- MP.2 Reason abstractly and quantitatively. (5-PS1-1),(5-PS1-2),(5-PS1-3)
- MP.4 Model with mathematics. (5-PS1-1),(5-PS1-2),(5-PS1-3)
- MP.5 Use appropriate tools strategically. (5-PS1-2),(5-PS1-3)
- 5.NBT.A.1 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-PS1-1)
- 5.NF.B.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (5-PS1-1)
- Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving 5.MD.A.1 multi-step, real-world problems. (5-PS1-2)
- 5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)
- Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. (5-PS1-1) 5.MD.C.4

MS.Structure and Properties of Matter

MS.Structure and Properties of Matter

Students who demonstrate understanding can:

MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples

of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete depiction of all individual atoms in a complex molecule or extended of the charge.]

MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and

impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure

substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

 Develop a model to predict and/or describe phenomena. (MS-PS1-1),(MS-PS1-4)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods.

 Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PSI-3)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1)
- Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-3) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2.)
- Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4)
- In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)
- Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)
- The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4)

PS1.B: Chemical Reactions

 Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2 and MS-PS1-5.)

PS3.A: Definitions of Energy

- The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PSI-4)
- The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)

Crosscutting Concepts

Cause and Effect

 Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Scale, Proportion, and Quantity

 Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1)

Structure and Function

 Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)

Influence of Science, Engineering and Technology on Society and the Natural World

 The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PS1-3)

Connections to other DCIs in this grade-band: MS.LS2.A (MS-PS1-3); MS.LS4.D (MS-PS1-3); MS.ESS2.C (MS-PS1-1),(MS-PS1-4); MS.ESS3.A (MS-PS1-3); MS.ESS3.C (MS-PS1-3)

Articulation across grade-bands: 5.PS1.A (MS-PS1-1); HS.PS1.A (MS-PS1-1),(MS-PS1-3),(MS-PS1-4); HS.PS3.A (MS-PS1-4); HS.LS2.A (MS-PS1-3);

HS.LS4.D (MS-PS1-3); HS.ESS1.A (MS-PS1-1); HS.ESS3.A (MS-PS1-3) Common Core State Standards Connections:

ELA/Literacy -

RST.6-8.1 RST.6-8.7 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions (MS-PS1-3)

Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram,

model, graph, or table). (MS-PS1-1),(MS-PS1-4)

Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-PS1-3)

WHST.6-8.8

Mathematics —

MP.2

Reason abstractly and quantitatively. (MS-PS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

MS.Structure and Properties of Matter

MP.4	Model with mathematics. (MS-PS1-1)
6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1)
6.NS.C.5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS1-4)
8.EE.A.3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)

HS.Structure and Properties of Matter

HS.Structure and Properties of Matter

Students who demonstrate understanding can:

- HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.]
- HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult's law calculations of vapor pressure.]
- HS-PS1-8. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay. [Clarification Statement: Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations.] [Assessment Boundary: Assessment does not include quantitative calculation of energy released. Assessment is limited to alpha, beta, and gamma radioactive decays.]
- HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* [Clarification Statement: Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.] [Assessment Boundary: Assessment is limited to provided molecular structures of specific designed materials.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS1-8)
- Use a model to predict the relationships between systems or between components of a system. (HS-PS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS1-3)

Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs.

 Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS2-6)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. (HS-PS1-1)
- The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. (HS-PS1-1)
- The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. (HS-PS1-3), (secondary to HS-PS2-6)

PS1.C: Nuclear Processes

 Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS-PS1-8)

PS2.B: Types of Interactions

 Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-1),(secondary to HS-PS1-3),(HS-PS2-6)

Crosscutting Concepts

Patterns

 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS1-1),(HS-PS1-3)

Energy and Matter

 In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved. (HS-PS1-8)

Structure and Function

 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-PS2-6)

Connections to other DCIs in this grade-band: HS.PS3.A (HS-PS1-8); HS.PS3.B (HS-PS1-8); HS.PS3.C (HS-PS1-8); HS.PS3.D (HS-PS1-8); HS.PS3.D (HS-PS1-8); HS.ESS1.A (HS-PS1-8); HS.ESS2.C (HS-PS1-3)

Articulation to DCIs across grade-bands: MS.PS1.A (HS-PS1-1),(HS-PS1-3),(HS-PS1-8); MS.PS1.B (HS-PS1-1),(HS-PS1-8); MS.PS1.B (HS-PS1-8); MS.PS1.B (HS-PS1-8)

Common Core State Standards Connections:

FLA/Literacy -

RST.9-10.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words. (HS-PS1-1)

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS1-3),(HS-PS2-6)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-PS2-6) Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS1-3)

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS1-3)

Mathematics –

MP.4 Model with mathematics. (HS-PS1-8)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

HS.Structure and Properties of Matter

HSN-Q.A.1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose					
	and interpret the scale and the origin in graphs and data displays. (HS-PS1-3),(HS-PS1-8),(HS-PS2-6)					
HSN-Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. (HS-PS1-8), (HS-PS2-6)					
HSN-Q.A.3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS1-3),(HS-PS1-8),(HS-PS2-6)					

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved. 75 of 102

Core Idea PS1 Matter and Its Interactions

How can one explain the structure, properties, and interactions of matter?

The existence of atoms, now supported by evidence from modern instruments, was first postulated as a model that could explain both qualitative and quantitative observations about matter (e.g., Brownian motion, ratios of reactants and products in chemical reactions). Matter can be understood in terms of the types of atoms present and the interactions both between and within them. The states (i.e., solid, liquid, gas, or plasma), properties (e.g., hardness, conductivity), and reactions (both physical and chemical) of matter can be described and predicted based on the types, interactions, and motions of the atoms within it. Chemical reactions, which underlie so many observed phenomena in living and nonliving systems alike, conserve the number of atoms of each type but change their arrangement into molecules. Nuclear reactions involve changes in the types of atomic nuclei present and are key to the energy release from the sun and the balance of isotopes in matter.

PS1.A: STRUCTURE AND PROPERTIES OF MATTER

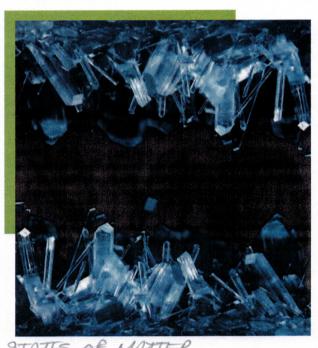
How do particles combine to form the variety of matter one observes?

While too small to be seen with visible light, atoms have substructures of their own. They have a small central region or nucleus—containing protons and neutrons—surrounded by a larger region containing electrons. The number of protons in the atomic nucleus (atomic number) is the defining characteristic of each element; different isotopes of the same element differ in the number of neutrons only. Despite the immense variation and number of substances, there are only some 100 different stable elements.

Each element has characteristic chemical properties. The periodic table, a systematic representation of known elements, is organized horizontally by increasing atomic number and vertically by families of elements with related chemical properties. The development of the periodic table (which occurred well before atomic substructure was understood) was a major advance, as its patterns suggested and led to the identification of additional elements with particular properties. Moreover, the table's patterns are now recognized as related to the atom's outermost electron patterns, which play an important role in explaining chemical reactivity and bond formation, and the periodic table continues to be a useful way to organize this information.

Develop a model to describe that matter is made of particles too peen.

Otomo. combine to form moleculi


Varied properties simportant K-5 but not atomic or molecular dructure

differences in properties The substructure of atoms determines how they combine and rearrange to form all of the world's substances. Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and electrons) in matter explain the structure of atoms and the forces between atoms that cause them to form molecules (via chemical bonds), which range in size from two to thousands of atoms (e.g., in biological molecules such as proteins). Atoms also combine due to these forces

to form extended structures, such as crystals or metals.

The varied properties (e.g., hardness, conductivity) of the materials one encounters, both natural and manufactured, can be understood in terms of the atomic and molecular constituents present and the forces within and between them.

Within matter, atoms and their constituents are constantly in motion. The arrangement and motion of atoms vary in characteristic ways, depending on the substance and its current state

stance and its current state — STATES OF MATTER (e.g., solid, liquid). Chemical composition, temperature, and pressure affect such arrangements and motions of atoms, as well as the ways in which they interact. Under a given set of conditions, the state and some properties (e.g., density, elasticity, viscosity) are the same for different bulk quantities of a substance, whereas other properties (e.g., volume, mass) provide measures of the size of the sample at hand.

Materials can be characterized by their intensive measureable properties. Different materials with different properties are suited to different uses. The ability to image and manipulate placement of individual atoms in tiny structures allows for the design of new types of materials with particular desired functionality (e.g., plastics, nanoparticles). Moreover, the modern explanation of how particular atoms influence the properties of materials or molecules is critical to understanding the physical and chemical functioning of biological systems.

Dimension 3: Disciplinary Core Ideas—Physical Sciences

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas Critical to read each endpoint assissment not state & matter instructor Grade Band Endpoints for PS1.A By the end of grade 2. Different kinds of matter exist (e.g., wood, metal, water), and many of them can be either solid or liquid, depending on temperature. Tenup, Matter can be described and classified by its observable properties (e.g., visual, aural, textural), by its uses, and by whether it occurs naturally or is manufactured. Different properties are suited to different purposes. A great variety of objects can be built up from a small set of pieces (e.g., blocks, construction — P.F. sets). Objects or samples of a substance can be weighed, and their size can be described and measured. (Boundary: volume is introduced only for liquid describe/measurerliquids measure.) Very small By the end of grade 5. Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means (e.g., by weighing or by its effects on other objects). For example, a model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon; the effects of air on larger particles or objects (e.g., leaves in wind, dust suspended in air); and the appearance of visible scale water droplets in condensation, fog, and, by extension, also in solune in clouds or the contrails of a jet. The amount (weight) of matter is conserved K-2 when it changes form, even in transitions in which it seems to vanish (e.g., sugar in solution, evaporation in a closed container). Measurements of a variety of properties (e.g., hardness, reflectivity) can be used to identify particular materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) howto same measure By the end of grade 8. All substances are made from some 100 different types of hardness now atoms not atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. Pure substances are made from a single type of atom or molecule; each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. properties Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact liquid Y with each other; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and vibrate in position but do not UN DA Framework for K-12 Science Education Copyright National Academy of Sciences. All rights reserved.

predicted not just described. change relative locations. Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (Boundary: Predictions here are qualitative, not quantitative.)

By the end of grade 12. Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. Stable forms of matter are those in which the electric and magnetic field energy is minimized. A stable molecule has less energy, by an amount known as the binding energy, than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart.

PS1.B: CHEMICAL REACTIONS

How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?

Many substances react chemically with other substances to form new substances with different properties. This change in properties results from the ways in which atoms from the original substances are combined and rearranged in the new substances. However, the total number of each type of atom is conserved (does not change) in any chemical process, and thus mass does not change either. The property of conservation can be used, along with knowledge of the chemical properties of particular elements, to describe and predict the outcomes of reactions. Changes in matter in which the molecules do not change, but their positions and their motion relative to each other do change also occur (e.g., the forming of a solution,

Understanding chemical reactions and the properties of elements is essential not only to the physical sciences but also is foundational knowledge for the life sciences and the earth and space sciences.

Nextgenocunce org appendix E Physical Science Progression

INCREASING SOPHISTICATION OF STUDENT THINKING

PS3.B Conservation of energy and energy transfer	PS3.A Definitions of energy	Stability & instability in physical systems	PS2.B Types of interactions	PS2.A Forces and motion	PS1.B Chemical reactions	PS1.A Structure of matter (includes PS1.C Nuclear processes)	
[Content found in PS3.D]	N/A	N/A	and directions, and can change the speed or direction of its motion or start or stop it.	Pushes and pulls can have different strengths	Heating and cooling substances cause changes that are sometimes reversible and sometimes not.	Matter exists as different substances that have observable different properties. Different properties are suited to different purposes. Objects can be built up from smaller parts.	K-2
objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.	Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving	N/A	forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center.	The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict fifture motion.	Chemical reactions that occur when substances are mixed can be identified by the emergence of substances with different properties; the total mass remains the same.	Because matter exists as particles that are too small to see, matter is always conserved even if it seems to disappear. Measurements of a variety of observable properties can be used to identify particular materials.	3-5 6-8
can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.	Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type	N/A	Forces that act at a distance involve fields that can be mapped by their relative strength and effect on an object.	The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.	Reacting substances rearrange to form different molecules, but the number of atoms is conserved. Some reactions release energy and others absorb energy.	The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter. M. L.	6-8
predicted in terms of energy associated with the motion or configuration of particles (objects). Systems move toward stable states	The total energy within a system is conserved. Energy transfer within and between systems can be described and	N/A	Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.	Newton's 2 nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects	chemical processes are understood in terms of collisions of molecules, rearrangement of atoms, and changes in energy as determined by properties of elements involved.	The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this	9-12