

PNHS Chemistry Criteria: CE

IMF racetrack lab

Codes: 4.3.1 2005-2006

Hours 2

GOAL:

The goal of this lab investigation is to practically investigate the properties of 6 different liquids through evaporation and molecular structure to identify them.

Prelab:

Intermolecular forces (IMF) hold molecules together in the liquid phase. If there is a minimal amount of intermolecular force, the boiling point is very low. If the IMF is high, then so is the boiling point. Also, mass plays a role in boiling point. Since the molecule must be moving at a particular velocity in order to change into a gas, then if the molecule weighs a lot, then it requires more energy to boil. The third factor that plays a role is the geometry of the molecule. If a molecule can "fit together" then it can exhibit more effective IMF. These three factors, IMF, mass, and geometry, affect the boiling point (or evaporative rate).

- 1. Predict IMF (Dispersion, dipole, Hydrogen bonding) for each substance in the data table.
- 2. Rank which substance will evaporate fastest (1 fastest 6 slowest) based on IMF predictions.

Materials:

Six unknown liquids labeled A through F Cotton swabs Model kits

Procedure:

- 1. Dip the cotton swab into a liquid, dip another swab into another liquid.
- 2. Streak the cotton swabs along the table at the same time.
- 3. Observe and determine which liquid evaporated faster.
- Repeat for all six liquids until you have built a chart of the fastest to the slowest liquid.
- 5. Clean up.
- 6. Obtain a model kit and build a model of each molecule listed in the data section. This is to visually help you in determining geometry and how the molecules interact.
- 7. Draw the Lewis dot structure for each molecule in the lab notebook.
- 8. Circle and identify the IMF regions on each molecule.
- 9. Rank the molecules from least to most IMF.
- 10. Use critical thinking skills and knowledge of IMF strengths to identify each liquid based on the molecular model and the rate of evaporation.

Liquids:

Compound Name	Chemical Formula	Predict types of IMF	<u>Pre-IMF</u> <u>Ranking</u>	Post-IMF Ranking
Ethanol -	CH ₃ CH ₂ OH	D, P, H		3
Isopropanol	(CH₃)₂CHOH	D, Bslight, H		4
n-butanol	CH3CH2CH2CH2OH	D, P, H		5
Hexane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	<u>D</u> ,		2
Acetone	CH ₃ COCH ₃ (Oxygen is double bonded to central carbon)	D, slightly polar		1
water	H₂O	D, <u>P</u> , H		